Kako faktor u potpunosti 16x ^ 2-8x + 1?

Kako faktor u potpunosti 16x ^ 2-8x + 1?
Anonim

Odgovor:

# (4x-1) ^ 2 #

Obrazloženje:

To je polinom drugog stupnja i od koeficijenta

#' '#

#x <0 #, mislimo na binomnu svojinu koja kaže:

#' '#

# A ^ 2-2ab + b ^ 2 = (a-b) ^ 2 #

#' '#

U danom polinomu prvi pojam # 16x ^ 2 = (4x) ^ 2 #i #1=(1)^2#

#' '#

# 16x ^ 2-8x + 1 #

#' '#

# = (4x) ^ 2-2 (4x) (1) 1 + # 2 ^

#' '#

# = (4x-1) ^ 2 #

Odgovor:

# 16x ^ 2 -8x + 1 #

# = (4x-1), (4x-1) #

Obrazloženje:

#COLOR (vapno) (+) # znak u trećem pojmu označava dvije stvari:

  • čimbenici trebaju biti #COLOR (vapno) (Dodano) #
  • znakovi u zagradama će #color (lime) ("biti isti") #

#COLOR (crveno) (-) #znak u drugom pojmu označava da će znakovi biti negativni.

# 16x ^ 2boja (crveno) (-) 8x boja (limeta) (+) 1 #

Pronađite čimbenike # 16 i 1 # koje dodaju #8#.

Čimbenici #1# su samo #1#, tako da ih možemo ignorirati.

Čimbenici #16# koje dodaju #8# su # 4 i 4 #

# 4xx4 = 16 i 4 + 4 = 8 #

# 16x ^ 2 -8x + 1 #

# = (4x-1), (4x-1) #