Odgovor:
Obrazloženje:
Da bismo ih lakše pozvali, nazovimo prvi vektor
To je, riječima, projekcija vektora
Prvo, pronađimo duljinu
Ali imajte na umu da u izrazu ono što zapravo želimo
Sada nam treba točkasti proizvod
(Da bismo pronašli točkasti proizvod, pomnožimo koeficijente od
Sada imamo sve što nam treba:
Što je projekcija <0, 1, 3> na <0, 4, 4>?
Vektorska projekcija je <0,2,2>, skalarna projekcija je 2sqrt2. Pogledaj ispod. S obzirom na veca = <0,1,3> i vecb = <0,4,4>, možemo pronaći proj_ (vecb) veca, vektorsku projekciju vece na vecb koristeći sljedeću formulu: proj_ (vecb) veca = (( Veca * vecb) / (| vecb |)) vecb / | vecb | To jest, točkasti proizvod dva vektora podijeljen veličinom vecb, pomnožen sa vecb podijeljen veličinom. Druga količina je vektorska veličina, budući da vektor dijelimo pomoću skalara. Napominjemo da vekeb dijelimo njegovom veličinom kako bismo dobili jedinični vektor (vektor magnitude 1). Možda ćete primijetiti da je prva
Što je projekcija (2i -3j + 4k) na (- 5 i + 4 j - 5 k)?
Odgovor je = -7 / 11 ,4 -5,4, -5〉 Vektorska projekcija vecb na veca je = (veca.vecb) / ( veca ) ^ 2veca Točkasti proizvod je veca.vecb =, 2, -3,4 〈. 〈- 5,4, -5〉 = (- 10-12-20) = - 42 Modul veca je = 〈-5,4, -5〉 = sqrt (25 + 16) +25) = sqrt66 Vektorska projekcija je = -42 / 66 ,4 -5,4, -5〉 = -7 / 11 ,4 -5,4, -5
Što je projekcija (2i + 3j - 7k) na (3i - 4j + 4k)?
Odgovor je = 34/41, 3, -4,4〉 Vektorska projekcija vecb na veca je = (veca.vecb) / ( veca ^ 2) veca Točkasti proizvod je veca.vecb = 〈2,3 , -7 〈., 3, -4,4〉 = (6-12-28) = 34 Modul veca je = veca = 〈3, -4,4 = sqrt (9 + 16 + 16) = sqrt41 Vektorska projekcija je = 34/41, 3, -4,4