Kako riješiti 3x ^ 2-5x + 1 = 0 popunjavanjem kvadrata?

Kako riješiti 3x ^ 2-5x + 1 = 0 popunjavanjem kvadrata?
Anonim

Odgovor:

# x = (5 + sqrt13) / 6 ili #

# X = (5-sqrt13) / 6 #

Obrazloženje:

Za rješavanje ove jednadžbe moramo faktorizirati # 3x ^ 2-5x + 1 #

Budući da ne možemo koristiti bilo koji od polinomskih identiteta, dopustite nam

prebrojavati #COLOR (plava) delta #

#COLOR (plava) (delta-b ^ 2-4ac) #

#delta = (- 5) ^ 2-4 (3) (1) #

# Delta = 25-12 = 13 #

Korijeni su:

# X_1 = (- b + sqrtdelta) / (2a) = boja (crvena) ((5 + sqrt13) / 6) #

# X_2 = (- b + sqrtdelta) / (2a) = boja (crvena) ((5-sqrt13) / 6) #

Sada riješimo jednadžbu:

# 3x ^ 2-5x + 1 = 0 #

# (X-x_1) (x-x_2) = 0 #

# (X-boja (crvena) ((5 + sqrt13) / 6)) (x-boja (crvena) ((5-sqrt13) / 6)) = 0 #

# x- (5 + sqrt13) / 6 = 0 rArr x = (5 + sqrt13) / 6 ili #

# x- (5-sqrt13) / 6 = 0rArr x = (5-sqrt13) / 6 #