Odgovor:
Obrazloženje:
Redoslijed operacija prikazan je ovdje, PEMAS:
Kao što možete vidjeti, zagrade su prva stvar koju trebamo učiniti, pa pojednostavimo količinu u zagradama:
Sljedeći je eksponent:
Zagrade ili
Sada ćemo riješiti količinu unutar zagrada:
Sljedeće što možete učiniti je množenje:
I na kraju oduzimanje:
Nadam se da ovo pomaže!
Odgovor:
Obrazloženje:
PEMDAS
Perentheses, exponent, množenje, dijeljenje, zbrajanje, oduzimanje
Korak 1:
Korak 2:
Korak 3: Izračunajte što je izvan zagrada / zagrada
Kako pojednostavljujete 6 + 3 [(12/4) + 5] koristeći redoslijed operacija?
Pogledajte detaljan postupak u nastavku. 6 + 3 [(12/4) +5] 6 + 36/4 + 15 6 + 9 + 15 15 + 15 30
Kako pojednostavljujete 3 (8-2) ² + 10 - 5 - 6 * 5 koristeći redoslijed operacija?
80 Kada koristite PEMDAS, zagrade pomažu toni. Zapamtite: Zagrade Izložbe Množenje / Odvajanje (Zamjenjivo) Dodavanje / Oduzimanje (Zamjenjivo) Odvojimo pojam u nešto lakše za oči: 3 (8-2) ^ 2 + (10/5) - (6 * 5) Sada imamo točno isti izraz, ali postaje jasno što prvo moramo učiniti. Pratimo PEMDAS: 3 (6) ^ 2 + (10/5) - (6 * 5): boja (crvena) (8 - 2 = 6) 3 (36) + (10/5) - (6 * 5) : boja (crvena) (6 ^ 2 = 36) 108+ (10/5) - (6 * 5): boja (crvena) (3 * 36 = 108) 108+ (2) - (6 * 5): boja (crvena) (10 -: 5 = 2) 108+ (2) - (30): boja (crvena) (6 * 5 = 30) 110-30: boja (crvena) (108 + 2 = 110) 80: boja (crveno) (110 - 30 = 80)
Kako pojednostavljujete 21 - 1 puta 2 using 4 koristeći redoslijed operacija?
20.5 Ono što trebate zapamtiti kada rješavate ovo je sljedeće: počnete gledati ima li zagrada, jer morate riješiti sve što je između zagrada prije nego što učinite bilo što drugo. Unutar zagrada primjenjuju se ista pravila kao što je opisano ovdje. Onda pogledate ako ima bilo kakvih eksponenata, oni moraju biti riješeni nakon što riješite zagrade. Kada to učinite, pomnožite ili podijelite ako je potrebno. Nije važno u kojem redoslijedu možete ići s lijeva na desno ili s desna na lijevo s množenjem ili dijeljenjem, što god vam najviše odgovara. Na kraju dodajete ili oduzimate. Kao i kod množenja ili dijeljenja, nije važno k