Neka ABC ekvatorijalni trokut upisan u krug s radijusom r
Primjenjujući pravo sinusa na trokut OBC, dobivamo
Sada je područje upisanog trokuta
Sada
i
Konačno
Dva ugla jednakostraničnog trokuta nalaze se u (1, 2) i (1, 7). Ako je područje trokuta 64, koje su duljine stranica trokuta?
"Duljina stranica je" 25.722 na 3 decimalna mjesta "Osnovna duljina je" 5 Obratite pozornost na način na koji sam pokazao svoj rad. Matematika se dijelom odnosi na komunikaciju! Neka Delta ABC predstavlja onu u pitanju Neka duljina stranica AC i BC bude s Neka je okomita visina h Neka površina bude a = 64 "jedinica" ^ 2 Neka A -> (x, y) -> ( 1,2) Neka B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ boja (plava) ("Odrediti dužinu AB") boja (zelena) (AB "" = "" y_2-y_1 "" = "" 7-2 "" = "5)" ~~~~~~~
Dva ugla jednakostraničnog trokuta nalaze se u (1, 3) i (1, 4). Ako je područje trokuta 64, koje su duljine stranica trokuta?
Duljine stranica: {1,128.0,128.0} Vrha na (1,3) i (1,4) su jedna jedinica. Dakle, jedna strana trokuta ima duljinu od 1. Imajte na umu da jednake duljine jednakokračnog trokuta ne mogu biti jednake 1 jer takav trokut ne može imati površinu od 64 m². Ako koristimo stranu s duljinom 1 kao bazu tada visina trokuta u odnosu na ovu bazu mora biti 128 (Budući da je A = 1/2 * b * h s danim vrijednostima: 64 = 1/2 * 1 * hrarr h = 128) Dijeljenjem baze formirajući dva desna trokuta i primjenjujući Pitagorejsku teoremu, duljine nepoznatih strana moraju biti sqrt (128 ^ 2 + (1/2) ^ 2) = sqrt (16385) ~~ 128.0009766 (Primjetite om
Koje je područje jednakostraničnog trokuta upisano u krug s radijusom od 5 inča?
(50 + 50 * 1/2) sqrt 3/4 Delta ABC je jednakostraničan. O je središte. | OA | = 5 = | OB | Š O O = 120º = (2 pi) / 3 Cossinov zakon: | AB | ^ 2 = 5 ^ 2 + 5 ^ 2 - 2 * 5 ^ 2 cos 120º = L ^ 2 A_Delta = L ^ 2 sqrt 3/4