Odgovor:
Obrazloženje:
1) Nađite nagib dviju linija.
2) Nađite okomicu obaju padina.
3) Pronađite središta točaka koje ste koristili.
4) Koristeći nagib, pronađite jednadžbu koja joj odgovara.
4) Set čini jednadžbe jednake jedna drugoj.
5) Uključite x-vrijednost i riješite za y
6) Odgovor je …
Što je ortocentar trokuta s kutovima u (1, 2), (5, 6) i (4, 6) #?
Ortocentar trokuta je: (1,9) Neka je trokutasti ABC trokut s kutovima na A (1,2), B (5,6) iC (4,6) Let, bar (AL), bar (BM) i bar (CN) su visine na bočnoj traci (BC), traka (AC) i traka (AB). Neka je (x, y) sjecište triju visina. Nagib šipke (AB) = (6-2) / (5-1) = 1 => nagib šipke (CN) = - 1 [:. visina] i traka (CN) prolazi kroz C (4,6) Dakle, equn. bar (CN) je: y-6 = -1 (x-4), tj. boja (crvena) (x + y = 10 .... do (1) Sada, nagib bara (AC) = (6-2) ) / (4-1) = 4/3 => nagib bara (BM) = - 3/4 [:. Visina] i bar (BM) prolazi kroz B (5,6) Dakle, ekvivalent bar (BM) ) je: y-6 = -3 / 4 (x-5) => 4y-24 = -3x + 15 tj. boja (
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (2, 3) #?
Ortocentar trokuta ABC je H (5,0) Neka je trokut ABC s uglovima na A (1,3), B (5,7) i C (2,3). tako, nagib "linije" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Nagib "linije" CN = -1 / 1 = -1, i prolazi kroz C (2,3). : .Equn. "line" CN je: y-3 = -1 (x-2) => y-3 = -x + 2 tj. x + y = 5 ... do (1) Sada, nagib "linije" (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Nagib "linije" AM = -1 / (4/3) = - 3/4, i prolazi kroz A (1,3). : .Equn. "line" AM, je: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3, odnosno 3x + 4y = 15 ... do (2) sjecište "
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (9, 8) #?
(-10 / 3,61 / 3) Ponavljanje točaka: A (1,3) B (5,7) C (9,8) Ortocentar trokuta je točka u kojoj je linija visina relativno na svaku stranu (prolazeći kroz suprotni vrh) susreću se. Dakle, trebamo samo jednadžbe od 2 retka. Nagib linije je k = (Delta y) / (Delta x), a nagib pravca okomit na prvi je p = -1 / k (kada je k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Jednadžba crte (koja prolazi kroz C) u kojoj se postavlja visina okomita na AB (y-y_C) = p (x-x_C) => (y-8) = - 1 * (x-9) => y = -x + 9 + 8 => y = -x + 17 [1] Jednadžba linije (koja prolazi kr