Odgovor:
Obrazloženje:
Od
Stoga
Područje paralelograma je 24 centimetra, a baza paralelograma je 6 centimetara. Kolika je visina paralelograma?
4 centimetra. Površina paralelograma je osnovica xx visina 24cm ^ 2 = (6 xx visina) podrazumijeva 24/6 = visina = 4cm
Dvije suprotne strane paralelograma imaju duljinu od 3. Ako jedan kut paralelograma ima kut pi / 12 i područje paralelograma je 14, koliko dugo su ostale dvije strane?
Pretpostavljajući malo osnovne Trigonometrije ... Neka je x (zajednička) dužina svake nepoznate strane. Ako je b = 3 mjera osnove paralelograma, neka je h njegova vertikalna visina. Područje paralelograma je bh = 14 Budući da je b poznato, imamo h = 14/3. Iz osnovnog Trig, sin (pi / 12) = h / x. Možemo pronaći točnu vrijednost sinusa pomoću polu-kutne ili diferencijalne formule. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dakle ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h Zamijeni vrijednost h: x (sqrt6 - sqrt2) = 4 (14/3) x (sqrt6 - sqrt2) =
Što je područje paralelograma s vrhovima (-2,1), (4,1), (3-2) i (-3-2)? Pokažite posao.
6 * 3 = 18 A = (-2, 1), B = (4, 1) = 6 C = (3, -2) Desnobrdo | BC | ^ 2 = 1 ^ 2 + 3 ^ 2 = 10 D = (-3, -2) Rightarrow | CD | = 6, | DA | ^ 2 = 1 ^ 2 + 3 ^ 2 = 10 ABCD je doista paralelogram Rightarrow Area = | CD | * h AB: y = 1 CD: y = -2 h = dist (A, CD) = 3